
Foundations of Semantics III: Quantification and Raising

Rick Nouwen | R.W.F.Nouwen@uu.nl

February/March 2011, Gent

1 Quantification and type-logical composition

So far:

(1) t

e
John

〈e, t〉

〈e, 〈e, t〉〉
hates

e
Bill

What happens when the verb takes a quantificational argument like everyone?

(2) t

?
Everyone

〈e, t〉

〈e, 〈e, t〉〉
hates

e
Bill

1.1. Are quantificational expressions of type e?

(3) I see nobody on the road.
(’I only wish I had such eyes,’ the King remarked in a fretful tone. ’To be able to see Nobody!
And at that distance too!’)

(4) Somebody told me that nothing works faster than aspirin. So, I went out immediately to try and
by nothing. (example due to Hodges)

(5) No boy hates his mother. Which type e object would no boy refer to?

(6) Desideratum:
a. Everyone hates Bill
b. ∀x[person(x)→ hate(x, b)]

1

1.2. The proper treatment of quantification in natural language

If quantificational subjects are not of type e, then there is no analysis of (2) analogous to (1). The solution,
due to Montague (1973), is that subjects are not the type-logical argument of the verb phrase. Rather, the
verb phrase is the argument of the subject. That is, quantificational subjects are of type 〈〈e, t〉, t〉.

(7) t

〈〈e, t〉, t〉
Everyone

〈e, t〉

hates Bill

(8) a. Everyone: λP〈e,t〉.∀x[person(x)→ P(x)]
b. Nobody: λP〈e,t〉.¬∃x[person(x) ∧ P(x)]

(9) ∀x[person(x)→ hate(x, b)]

λP.∀x[person(x)→ P(x)]
everyone

λx.hate(x, b)

hates Bill

¬∃x[person(x) ∧ hate(x, b)]

λP.¬∃x[person(x) ∧ P(x)]
nobody

λx.hate(x, b)

hates Bill

The strategy we explained above works well for quantificational subjects, but as it stands now it does
not work for objects. Explain the problem in detail.

(10) . . .

. . .
John

. . .

〈e, 〈e, t〉〉
hates

. . .
everyone

1.3. Determiner semantics

Given that we know that quantifiers are of type 〈〈e, t〉, t〉, we can now find out what is the type of
determiners. Determiners combine with a noun phrase of type 〈e, t〉 to return a 〈〈e, t〉, t〉, and their type
is therefore quite complex:

(11) 〈〈e, t〉, t〉

〈〈e, t〉, 〈〈e, t〉, t〉〉
every

〈e, t〉

〈e, t〉

professor

〈e, t〉

who came to my party

2

The type 〈〈e, t〉, 〈〈e, t〉, t〉〉 is the type of functions that take a property, then take a second property, to
return a proposition. What this means is that these functions are relations between properties. For instance,
every is the relation between properties such that all entities that have the first one, have the second one
too. No is the relation between properties such that no individual who has the first one has the second
one. The lexical entries are as follows:

(12) a. JeveryK = λP.λP′.∀x[P(x)→ P′(x)]
b. JnoK = λP.λP′.¬∃x[P(x) ∧ P′(x)]
c. JsomeK = λP.λP′.∃x[P(x) ∧ P′(x)]

2 Quantificational objects: Quantifier Raising

One way of extending the 〈〈e, t〉, t〉 strategy for quantificational noun phrases to cover quantificational
objects is to use movement at LF. As we will see below, this operation can be independently motivated.

(13) Quantifier Raising (QR): at LF quantifiers can raise to adjoin to any propositional node, leaving
behind a trace and introducing a lambda abstraction over the trace’s variable

Q

—QR−→

Q
λi

ti

(14) S

Bill VP

admires everybody

—QR−→ S

everybody
λi S

Bill VP

admires ti

Note: The inserted lambda operator has no syntactic significance, but is a prerequisite for interpretation

(15) ∀x[person(x)→ admire(b, x)]

λP.∀x[person(x)→ P(x)]
everybody

λi.admire(b, i)

λi admire(b, i)

b
Bill

λx.admire(x, i)

λy.λx.admire(x, y)
admires

i
ti

3

3 Type shifting

3.1. John as a quantifier

An interesting aspect of the now standard approach to the interpretation of quantificational arguments
is that this approach is available for all kinds of syntactic arguments, including proper names.

(16) Two options for John
a. j
b. λP〈e,t〉.P(j)

(17) hate(j, b)

j
John

λx.hate(x, b)

λy.λx.hate(x, y)
hates

b
Bill

hate(j, b)
=[λx.hate(x, b)](j)

=[λP.P(j)](λx.hate(x, b))

λP.P(j)
John

λx.hate(x, b)

λy.λx.hate(x, y)
hates

b
Bill

The fact that proper names can have a quantifier type is not so surprising, given the fact that they can
be coordinated with quantifiers. (We’re assuming here that coordination always involves expressions of
the same type.)

(18) John and every other student passed the exam.

There are also reasons to believe that proper names are not always of the 〈〈e, t〉, t〉-type, for they are
in some ways different from quantifiers like every NP. Most importantly, proper names are referential
in the sense that they refer to entities that can be picked up by pronouns in the subsequent discourse.
Quantificational DPs lack this property.

(19) Every boy failed the exam. #He was very disappointed.

(20) John failed the exam. He was very disappointed.

3.2. Definite descriptions

Like proper names, definite descriptions also appear to lead a type-logical double life:

(21) The best student in class failed the exam. He was very disappointed.

(22) I failed the student whose name I forgot and most students whose name I never knew.

4

3.3. 〈〈e, t〉, t〉, and 〈e, t〉, and e

So far, we have seen that DPs can be of type 〈〈e, t〉, t〉 (true quantifiers, proper names and definite
descriptions) and of type e (proper names and definite descriptions). Some DPs can be of type 〈e, t〉. The
best example are indefinites. Here is some evidence for this:

(23) Predicative position (complement of be / consider:
a. John is lazy.
b. John is a student.
c. #These people here are every student.
d. Mary considers John lazy.
e. Mary considers John a nerd.
f. #Mary considers these people many students.

(24) Coordination with adjectives:
Mary consider John lazy and a nerd.

3.4. Partee’s BE

One way to deal with the observed type-flexibility is to assume that there are mechanisms available that
type-shift meanings from one type into another. Here is one example, Partee’s operator that shifts an
〈〈e, t〉, t〉-type function into a 〈e, t〉-type one.

(25) BE = λP〈〈e,t〉,t〉.λz.P(λz′.z = z′)

Here is an example:

(26) Ja studentK = λP.∃x[student(x) ∧ P(x)]

(27) J[BE [a student]]K = λP〈〈e,t〉,t〉.λz.P(λz′.z = z′) (λP.∃x[student(x) ∧ P(x)])
= λz. [[λP.∃x[student(x) ∧ P(x)](λz′.z = z′)]
= λz. [∃x[student(x) ∧ [λz′.z = z′](x)]]
= λz.∃x[student(x) ∧ z = x]
= λz.student(z)

The last step is crucial. The penultimate line presents a function that takes an argument and returns true
if there is something identical to this argument which is a student. In other words, it returns true for all
and only the students. In other words, this function is the property of being a student.

A similar final step is unavailable if you were to apply BE to a universal quantifier.

(28) Jevery studentK = λP.∀x[student(x)→ P(x)]

(29) J[BE [every student]] K = λz.∀x[student(x)→ z = x]

This states the function that takes an argument and returns true if and only if every student is identical
to this argument. This only makes sense if there is exactly 1 individual in the whole world (in which
case this function is either the set containing this individual, if s/he is a student, or the empty set if s/he
is not). If there is more than 1 individual, this property will express the empty set. (For instance, if Bob
and Bill are both students, then Bob is not identical to every student and neither is Bill.)

5

The upshot is this. On the assumption that we will never use natural language to express thoughts
about a world with just a single individual, applying BE to every student will never result in a sensible
property: it invariably results in the empty set. This is why the shift from 〈〈e, t〉, t〉 to 〈e, t〉 is available for
indefinites, but not to true quantifiers like every NP. This explains the difference in distribution between
the two.

4 Using Logical Form for scope ambiguity

(30) Someone admires everyone
a. ∀y[person(y)→ ∃x[person(x) ∧ admire(x, y)]
b. ∃x[person(x) ∧ ∀y[person(y)→ admire(x, y)]]

What is the relation between the single surface order (31) and its two readings? One solution: There is a
level of syntactic representation that is derived from the surface structure by covert movement.

(31) [Someone [admires everyone]] Surface Structure

(32) ∀y[person(y)→ ∃x[person(x) ∧ admire(x, y)]]

λP.∀y[person(y)→ P(y)]
everyone

λk.∃x[person(x) ∧ admire(x, k)]

λk ∃x[person(x) ∧ admire(x, k)]

λP.∃x[person(x) ∧ P(x)]
someone

λi.admire(i, k)

λi admire(i, k)

ti λx.admire(x, k)

admire tk

Logical Form A

6

(33) ∃x[person(x) ∧ ∀y[person(y)→ admire(x, y)]]

λP.∃x[person(x) ∧ P(x)]
someone

λi.∀y[person(y)→ admire(i, y)]

λi ∀y[person(y)→ admire(i, y)]

λP.∀y[person(y)→ P(y)]
everyone

λk.admire(i, k)

λk admire(i, k)

ti λx.admire(x, k)

admire tk

Logical Form B

5 QR and subtypes of quantifiers

As I have presented it, so far, QR is unconstrained and indiscriminate. All DPs can QR and they can
all attach to the same positions. There are reasons to believe that this is too simplistic. One reason is
that QR seems to be a form of movement that is constrained in pretty much the same ways as overt
wh-movement. We will turn to this in the final section of this handout. In this section we will briefly
look at different kinds of quantifiers and differences in their scopal behaviour.

(34) Every man read two of the books.
a. . . . namely Aspects and Lectures in Government and Binding two>every
b. . . . but none of them read the same two books every>two

(35) Every man read more than two books.
a. . . . # namely Aspects, Lectures in GB and the minimalist program #more than two>every
b. . . . but none of them read the same book every>two

One way to account for the contrast between (34) and (35) is to assume that different kinds of DPs have
different landing sites for movement. Beghelli (1995) assumed a rich hierarchy of functional projections
that define potential sites where quantifiers move to. For instance, referential DPs like definites move to
the specifier of a high projection, while distributive quantifiers like every NP move to a lower position
and indefinites move optionally to either a low or a high position. There are many intricate details to
such theories. The interested reader is referred to Beghelli (1995), but especially to the volume Szabolcsi
(1996).

6 Scope economy

6.1. LF scope illusions: the case of 〈〈e, t〉, t〉-type proper names

Given that a proper name like John can be of the 〈〈e, t〉, t〉-type, we expect it to be able to raise. For
instance, (36) would have two LFs, one with the proper name in a position lower than that of negation

7

and one in a position that is higher than that of negation.

(36) John didn’t smoke.

(37)
not

John
λi

ti smoke

John
λi

not
ti smoke

It is important to understand that the two LFs in (37) result in an equivalent interpretation. That is,
even though in terms of hierarchical position at LF the scope relation between the proper name and
negation differs in the two cases, because of the meaning of John, this does not result in any noticeable
scope alternation. Proper names are not scope bearing entities, even in their quantifier type they merely
contribute an e-type argument to a predicate.

Let us see how this works, starting with the case where negation is in a higher position than John is. First,
the trace combines with the 〈e, t〉 meaning of smoke, resulting in the proposition smoke(i). The next step
is to lambda-abstract the i-variable, resulting in a property λi.smoke(i). Then, the quantifier meaning of
John is function applied to this property: λP.P(j) (λi.smoke(i)) = λi.smoke(i) (j) = smoke(j). In the last step
we add negation, yielding ¬smoke(j).

Now for the case where negation is in a lower position. Again, we start with combining the trace and
the predicate, yielding the proposition smoke(i). It is this proposition that is negated by not, yielding
¬smoke(i). Now we lambda-abstract the i-variable: λi.¬smoke(i) and then finally we function apply the
quantifier meaning of John to this property: λP.P(j) (λi.¬smoke(i)) = λi.¬smoke(i) (j) = ¬smoke(j). This
shows you that the relative position at LF of proper name and negation is of no consequence.

6.2. Scope Economy (Fox 1999)

There are many more cases where quantifier movement is semantically vacuous. For instance, (38) is
predicted to be structurally ambiguous between (38-a) and (38-b). However, these are truth-conditionally
equivalent.

(38) John admires every student.
a. [John [λx [every student [λy [tx [admires ty]]]]]]
b. [every student [λy [John [λx [tx [admires ty]]]]]]

Also, (39) is predicted ambiguous between (39-a) and (39-b), which are both equivalent to (40-a).

(39) Every student admires every professor
a. ∀x[student(x)→ ∀y[pro f essor(y)→ admire(x, y)]]
b. ∀y[pro f essor(y)→ ∀x[student(x)→ admire(x, y)]].

(40) ∀x∀y[student(x) ∧ pro f essor(y)→ admire(x, y)]= ∀y∀x[student(x) ∧ pro f essor(y)→ admire(x, y)]

Fox (1999) proposes that even though such semantically vacuous movement is theoretically possible, it is
prohibited in natural language. That is, he proposed the scope economy principle: quantifier movement
cannot be semantically vacuous. This principle is rather surprising, since if what is prohibited is
semantically vacuous, how are we going to tell whether the principle is empirically correct?

8

Fox shows that in certain cases one can observe that vacuous movement has indeed not taken place. For
instance, it is commonly assumed that ellipsis involves a form of parallelism. That is, in (41), the elided
phrase can only be resolved as being a syntactic structure that is isomorphic to the structure, at LF, of its
antecedent.

In (41) there are two readings available. Either the example is about a specific boy and girl (narrow scope
for every professor), or the example quantifies over different boys and girls (wide scope for every professor).

(41) Some boy admires every professor. Some girl does too.

If we now turn to the example in (42), we see that the first sentences receive only one interpretation,
namely one in which there is a specific boy who admires every professor. This is because, had the first
sentence had a non-specific reading for some boy, then every professor would have had to scope over the
subject. Consequently, in the second sentence a similar structure would have been needed, but there this
kind of movement is vacuous. This is why this reading is not observed.

(42) a. Some boy admires every professor. Mary does too.
b. Some boy admires every professor. Every girl does too.

7 Motivation for LF

By itself, scope ambiguity does not justify LF as a level of syntactic representation. There are sophisticated
ways of accounting for quantifier scope in a directly compositional setup.

One kind of motivation for LF, however, comes from constraints on movement: QR is limited in a similar
way to overt movement. I.e., the argument is based on analogy: what we know about overt movement
holds for QR as well.

Specificity conditions: Specific NPs may contain no free variable

(43) a. Who did you see a picture of t?
b. *Who did you see this picture of t?

(44) This picture of everybody is now on sale.
a. [everybodyi [this picture of ti] j [t j is now on sale]] UNAVAILABLE
b. [[this picture of everybodyi] j [t j is now on sale]] AVAILABLE

Coordinate Structure Constraint: Movement out of one of two coordinated conjuncts is prohibited

(45) a. Which professori do you think John likes ti?
b. *Which professori do you think John likes ti and hates the dean?

(46) a. A student likes every professor. ∃ > ∀, ∀ > ∃
b. A student likes every professor and hates the dean. ∃ > ∀, *∀ > ∃

Weak Crossover

(47) a. ??Whoi does hisi mother love ti?
b. Every studenti told hisi friend that hisi mother disliked hisi cousin. (no movement)

9

(48) ??Hisi mother loves every boyi.

(49) [[every boy]i hisi mother loves ti] LF

7.1. Problems: Indefinites

There are also cases whether the relation between overt and covert movement is more problematic. We
discuss one: indefinites.

(50) Limits of QR: syntactic islands
a. *Who do you think John likes t and hates the dean. coordination
b. *Who do you think if Mary kisses t, then John will faint. conditionals
c. *Who do you think John believes the claim that Mary kissed t. complex NP

(51) a. A student likes every professor and hates the dean. ∃ > ∀, *∀ > ∃
b. If every professor kisses Mary, then John will faint. if-then > ∀, *∀ > if-then
c. John told a rumour about Mary kissing everyone. ∃ > ∀, *∀ > ∃

(52) a. Every student likes some professor and hates the dean. ∃ > ∀, ∀ > ∃
b. If a professor kisses Mary, then John will faint. if-then > ∃, ∃ > if-then
c. John told several rumours about Mary kissing someone. several > ∃, ∃ > several

8 Beyond every, some and no

So far, we have only discussed limited set of quantifiers. In this section, we turn to the great variety
of quantifiers that exist. To discuss the semantics of expressions like most, many, etc. we need to first
introduce some more set theory however.

8.1. Set theory revisited

Basic set-theoretic operations and conventions:

(53) a ∈ A “a is a member of set A”

(54) a. ∅ is the set containing nothing, the empty set.
b. If A is a set and B is a set, then:

A ∪ B is the union of A and B — the set containing the elements of A and B combined
A∩B is the intersection of A and B — the set containing only those elements that are in both
A and B
A \ B, or sometimes A − B, is B subtracted from A — the set containing those elements that
are in A but not in B
Ā, or sometimes A′, is the complement of A — the set of elements not in A

8.2. Relations between sets

Operators like ∩ and ∪ make a new set out of two existing sets. For instance, if A and B are sets, then
A ∩ B is the intersection set of A and B.

We now introduce a way of comparing sets.

10

(55) A ⊆ B is true if all the elements of A are also in B, that is, if A is a subset of B.

(56) a. {a, b, c} ⊆ {a, b, c}
b. {{a, b}, c} ⊆ {a, b, {a, b}, c}
c. {a, b} * {d, {a, b}, c}

8.3. Sets as functions

Let us assume that there are just 5 entities, namely a, b, c, d, and e. Now consider the following set:

(57) S = {a, b, c}

This set can be seen as a particular type of function, a characteristic function. That’s a function that maps
some entities to 1 and other entities to 0. The idea is that S in (57) corresponds to a functions that returns
1 for individuals that are a member of S and 0 for individuals not in S. In other words, S corresponds to
the following f :

(58) f (a) = 1
f (b) = 1
f (c) = 1
f (d) = 0
f (e) = 0

This function f is of type 〈e, t〉 (it takes an entity to return a truth-value.) In general, then, we can take
〈e, t〉-type expressions to correspond to sets. For example:

(59) the verb phrase hates Mary
. . . is a function that map individuals who hate Mary to 1 and individuals who do not hate
Mary to 0
. . . is the set of people who hate Mary

(60) the noun student
. . . is a function that maps students to 1 and individuals who are not students to 0
. . . is the set of students

8.4. The subset relation between 〈e, t〉-types

(61) a. Jblue sweaterK ⊆ JsweaterK
b. Jadores and admires MaryK ⊆ Jadmire MaryK
c. Jstudent that owns a carK ⊆ JstudentK
d. Jowns a blue carK ⊆ Jowns a carK

8.5. Quantification as set comparison

(62) [[Every student] hates Mary.]
a. is true if the set of students is a subset of the set of people who hate Mary.

(63) the semantics of every:

11

a. λP.λP′.∀x[P(x)→ P′(x)]
b. λP.λP′.P ⊆ P′

The terms in (63-a) and (63-b) are two ways of doing the same thing. In the case of (63-a), you use
a statement of predicate logic as your representation of truth-conditions; in (63-b) you express the
truth-conditions as a set-theoretic statement.

(64) the semantics of some:
a. λP.λP′.∃x[P(x) ∧ P′(x)]
b. λP.λP′.P ∩ P′ , ∅

(65) the semantics of no:
a. λP.λP′.¬∃x[P(x) ∧ P′(x)]
b. λP.λP′.P ∩ P′ = ∅

It is important to be able to express truth-conditions in this set-theoretic way, since not all quantifiers are
predicate-logical. In predicate logic, we only have ∀ and ∃ as logical quantifiers. But natural language
has many more determiners above every and some:

(66) [[QP [DET . . .] student(s)] are lazy]
many / most / less than half the / more than three / three / exactly three / almost sixteen hundred / at
least 10 but no more than 20 / surprisingly few / . . .

Some examples, let HM be the set of individuals who hate Mary and S be the set of students:

(67) a. Most students hate Mary.
b. |S ∩HM| > |S −HM| (there are more students hating Mary than students not hating Mary)

(68) a. Exactly three students hate Mary.
b. |S ∩HM| = 3

(69) a. Between four and eight students hate Mary.
b. 4 ≤ |S ∩HM| ≤ 8

Fact: there is no predicate-logical form that can express the truth-conditions of most students are lazy (or
any other sentence with most)

(70) a. Mx[student(x)→ lazy(x)]
b. Mx[student(x) ∧ lazy(x)]

Say that Mx is to be interpreted as for most x The problem now is that neither (70-a) nor (70-b) will
do. The form in (70-a) tells us that most individuals in the domain are such that if they are a student,
then they are lazy. (This is true if most things in the domain are not students.) The form in (70-b) tells us
that most things in the domain are both student and lazy, but that’s not what the sentence most students
are lazy means.
The essence of the problem lies in the fact that most is two-place. It compare the property of being
a student, to the property of being lazy. This is beyond the reach of the predicate language we have
defined.

12

8.6. Determiners as relations

(71) a. Most(A)(B)⇔ |A ∩ B| > |A − B|
b. Some(A)(B)⇔ A ∩ B , ∅
c. More-than-a-quarter(A)(B)⇔ |A ∩ B| ÷ |A| > 0.25

(72) Provide the relations expressed by the following determiners
a. more than 8
b. at least 9

Are they equivalent?

9 Properties of Quantifiers

9.1. Universals

The following is an excerpt from von Fintel & Matthewson, ’Universals in Semantics’ (von Fintel and
Matthewson 2008):

Examples:

(73) a. Most students hate Mary⇔Most students are students who hate Mary
b. Some student is lazy⇔ Some student is a lazy student

The property of conservativity makes it that the noun argument of the determiner is special in that it
determines the domain. Conservativity says that there is no determiner Bla such that the truth-value of
Bla students hate Mary depends on how many non-students hate Mary.

Exception: only

(74) Only students hate Mary.

13

9.2. Monotonicity

(75) An operator Q of type 〈〈e, t〉, t〉 is upward monotone if and only if A ⊆ B & Q(A) entails Q(B)

(76) An operator Q of type 〈〈e, t〉, t〉 is downward monotone if and only if A ⊆ B & Q(B) entails Q(A)

(77) An operator Q of type 〈〈e, t〉, t〉 is non-monotone if it is neither upward nor downward monotone.

Example:

(78) a. All students own a blue car⇒ All students own a car upward
b. No student owns a blue car⇐ No student owns a car downward
c. Exactly two students own a blue car< Exactly two students own a car non-monotone

What generalisation does (79) suggest?

(79) a. *Some of my dogs ever stole a bone.
b. *Every dog of mine ever stole a bone.
c. None of my dogs ever stole a bone.

Why is the following example felicitous?

(80) Every dog that ever stole a bone will go to hell.

10 Further reading

Heim and Kratzer on quantification: chapters 6, 7 and 8.

Type shifting: Partee 1987; de Swart 2001

Indefinites and LF: Fodor and Sag 1982; Kratzer 1997; Reinhart 1997

One can find a particularly deep and rich discussion of scope matters in Ruys and Winter (2010). (See
http://www.phil.uu.nl/ yoad/papers/RuysWinterScope.pdf).

For on expressions like most, many, few, two, more than two, at least two, see Nouwen 2009 for an overview
of the semantics of these expressions from several perspectives (including a psychological one). (Written
for a general linguistic audience.)

A good further reading about the set-theoretic semantics of quantifiers is the chapter on Generalised
Quantifiers in de Swart (1998). For a more technical introduction, see the chapter on generalised
quantifier theory in Partee et al. (1993). .

References

Beghelli, F. (1995). The Phrase Structure of Quantifier Scope. Ph. D. thesis, UCLA.

de Swart, H. (1998). Introduction to Natural Language Semantics. CSLI Publications.

de Swart, H. (2001). Weak readings of indefinites: type-shifting and closure. The Linguistic Review 18(1),
69–96.

Fodor, J. D. and I. Sag (1982). Referential and quantificational indefinites. Linguistics and Philosophy 5,
355—398.

14

Fox, D. (1999). Economy and Semantic Interpretation, Volume 35 of Linguistic Inquiry Monographs. MIT
press.

Kratzer, A. (1997). Scope or pseudoscope? are there wide scope indefinites? In S. Rothstein (Ed.),
Events and Grammar. Kluwer.

Montague, R. (1973). The proper treatment of quantification in ordinary english. In K. Hintikka,
J. Moravcsik, and P. Suppes (Eds.), Approaches to Natural Language, pp. 221–242. Dordrecht: Reidel.

Nouwen, R. (2009). What’s in a quantifier? In T. Lentz, H. de Mulder, Ø. Nilsen, and A. Zondervan
(Eds.), Theoretical Validity and Psychological Reality. Forthcoming, pre-published version available
at http://www.let.uu.nl/˜Rick.Nouwen/personal/papers/wiaq.pdf.

Partee, B. (1987). Noun phrase interpretation and type-shifting principles. In J. Groenendijk,
D. de Jongh, and M. Stokhof (Eds.), Representation Theory and the Theory of Generalized Quanti-
fiers, Volume 8 of Studies in Discourse, pp. 115–143. Dordrecht: Foris.

Partee, B., A. ter Meulen, and R. Wall (1993). Mathematical methods in linguistics. Kluwer Academic
Publishers.

Reinhart, T. (1997). Quantifier scope: how labor is divided between QR and choice functions. Linguistics
and Philosophy 20, 335–397.

Ruys, E. and Y. Winter (2010). Quantifier scope in formal linguistics. In D. Gabbay and F. Guenthner
(Eds.), Handbook of philosophical logic. Amsterdam: Benjamins.

Szabolcsi, A. (1996). Ways of Scope Taking. Kluwer Academic Publishers.

von Fintel, K. and L. Matthewson (2008). Universals in semantics. The linguistic review 25, 139–201.

15

