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1 Meaning

There can be no simple answer to the question of what the meaning of a sentence is. The word meaning
has many different senses. This is why in linguistics we tend to be very explicit about the kinds of
meanings we are studying. Here are two examples:

(1) What is the meaning of a natural language expression?
a. that to which it refers
b. that which the speaker intends to communicate with it

The first answer to the question, (1-a), is what is normally associated with the study of natural language
semantics. Central to semantics is the relationship between a sentence and the world. So, the meaning
of John is the individual we refer to by the word ‘John’ and the meaning of John hates Bill is what needs
to be the case in order for this sentence to be true.

One could see the answer in (1-b) as typical to pragmatic inquiry. Beyond mere reference, pragmatic
meanings are about the use of a sentence in a particular context. For instance, consider the following
context. Someone has just asked Will John invite Bill to the party? If in this context, I answer John hates
Bill, it is likely that I intend this sentence to be understood as a negative answer to the question whether
John will invite Bill to the party.

There are interesting ways in which pragmatic meaning appears to depend on semantic meaning, and
there are many phenomena that straddle the semantics/pragmatics divide. It is therefore important to be
very precise about what kind of meaning one focuses on. Central to this course is the referential theory
of meaning that underlies what is often called formal, or truth-conditional, or model-theoretic semantics.

2 Truth-conditions

Apart from the referential nature of meaning, one crucial assumption in formal semantics concerns what
it means to know the (semantic) meaning of a sentence. Consider, (2).

(2) Rick has a 50 cent coin in his wallet.

To know (semantically) what (2) means is to be able to distinguish a situation in which (2) is true, from
one in which (2) is false. You clearly know how you would go about this: all you need to do is look in
my wallet and sift through the coins on the lookout for a 50c coin. Consequently, you know what (2)
means, even though you don’t know whether or not it is true.

To know the meaning of S is to know when S is true; that is, to know the conditions that make
it true: its truth-conditions.
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Crucially, (2) tells us something very specific about the world we live in, namely that if you were to look
in my wallet you would find a 50c coin. This information is very specific in the sense that it leaves a lot
of other stuff open: whether there is more than one coin in my wallet; whether there are any other coins
in my wallet; what my wallet looks like; etc. In other words, there exists an infinity of situations that
make (2) true, but all these situations have one thing in common. This one thing is what the meaning of
(2) corresponds to.

If you haven’t looked in my wallet yet, and I assert (2) and you believe me, then you will have gained
information. Before accepting (2), you did not know whether the world you lived in was one in which I
have a 50c coin in my wallet. Afterwards, you did know (or at least believed so). This is what meanings
in the relevant sense do: they convey information about the world.1

Formal or truth-conditional semantics is sometimes called model-theoretic semantics. The idea is that a
sentence is true or false only with respect to a particular way things are, a particular model of what is
reality. In some state of affairs, the sentence is true, and in some others it will be false. Such alternative
state of affairs are often called a possible world. Imagine that apart from the world we live in, there are
many other possible worlds. Truth-values are relative to such possible worlds. For instance:

(3) World A: Obama is president of the US, Rick is a semanticist, Rome is the capital of Italy, Rick has
a 50 cent coin in his wallet, etc.

(4) World B: Obama is president of the US, Rick is a semanticist, Rome is the capital of Italy, Rick
doesn’t have a 50 cent coin in his wallet, etc.

(5) World C: Hilary Clinton is president of the US, Rick is a baker, Rome is the capital of Italy, Rick
has a 50 cent coin in his wallet.

(6) World D: etc.

The idea is that all the facts that are true describe a unique possible world, namely the actual one. At
the same time, there are many alternatives to these actual matters of fact. Semantic sentence meanings
can steer us towards finding out which possible world is actual. This is because semantic sentence
meanings, i.e. truth-conditions, are particular ways of distinguishing different possible worlds. One
knows the meaning of Rick has a 50 cent coin in his wallet if and only if one can distinguish worlds / models
in which it is true from worlds in which it is false.

3 Entailment

One of the prime sources of data for the study of semantics are entailments. You can use (intuitions about)
entailments to establish whether two (declarative) sentences are semantically independent, semantically
related or semantically identical.

Entailment — Sentence S entails sentence S’ if and only if whenever S is true, S’ is true too

In (7), you find an example of an entailment, indicated with⇒.

(7) a. John owns a blue sweater.
b. ⇒ John owns a sweater.

1Contrast this kind of informational view on meaning to the following use of the verb to mean, which is not the primary sense
of meaning that we’re after:

(i) Rick has a 50c coin in his wallet. This means that Rick can get a shopping trolley.
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The denial of something true is false, and so, by the definition of entailment, we come to expect that a
sentence together with the denial of one of its entailments forms a contradiction. Contradictions cannot
be uttered felicitously.

(8) #John owns a blue sweater, but he does not own a sweater.

3.1. Entailment relations and truth-conditions

Given the notion of entailment, there are three kinds of meaning relations that may exist between two
sentences.

(9) either S⇒S’ or S’⇒S truth-conditionally related
neither S⇒S’ nor S’⇒S truth-conditionally unrelated

both S⇒S’ and S’⇒S truth-conditionally equivalent

The sentences in (7) are truth-conditionally related. That is, John owns a blue sweater entails John owns a
sweater, but not vice versa. Consequently, we cannot find a situation in which the former is true, but the
latter false, while we can find a situation in which it is true that John owns a sweater, but false that he
owns a blue one. (Just take a situation in which John’s sweater is red.)

Two truth-conditionally equivalent sentences, i.e. two sentences that entail one-another, have exactly the
same semantic meaning. This means that there are no situations in which their truth value differs: when
one of the two sentences is true, then both of them are true; when one of the two sentences is false, then
both of them are false.

For instance, (10-a) both entails and is entailed by (10-b). This suggests that the dative alternation in
English has no semantic import.

(10) a. John gave Mary an apple.
b. John gave an apple to Mary.

In summary, the relation between entailments and truth-conditions is a tight one. Above we said that S
entail S’ if whenever S is true, S’ is true too. An alternative way of saying the same thing is to make use
of the notion of possible world:

Entailment — Sentence S entails sentence S’ if and only if S’ is true in all possible worlds in
which S is true

We can depict truth-conditions by sketching the worlds in which sentences are true by means of Venn
diagrams.

(11)
S

S’

S entails S′

(12)

S S’

S and S′ are contradictory
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(13) no entailment relation

(14)

S

S’ equivalence

Exercise— How would you show that the two sentences in (15) are *not* truth-conditionally equivalent?

(15) a. All students didn’t do their homework.
b. Not all students did their homework.

Do the same for (16):

(16) a. The two girls lifted a piano.
b. Both girls lifted a piano.

Exercise: What are the entailment relations between the following (a.) and (b.) sentences?

(17) a. All famous boxers are rich.
b. All boxers are rich.

(18) a. John does not own a blue sweater.
b. John does not own a sweater.

Exercise — We can test a semantic theory, by testing the predicted entailments. Say, our theory gives the
following truth-conditions for the sentence S=“John did not see a unicorn”: S is true only in situations
in which there exists a unicorn that John did not see. Show that these truth-conditions make a wrong
prediction.

Exercise — Discuss the following sentences with respect to entailments.

(19) a. John was born in London or in Manchester.
b. John was born in London or John was born in Manchester.
c. Everybody in my class was born in London or in Manchester.
d. Everybody in my class was born in London or everybody in my class was born in Manchester.

Exercise — Discuss the meaning of cold, warm and hot, given the following intuition that (20-b) is a
contradiction, but (20-a) is not.

(20) a. The soup is warm. In fact, it is hot.
b. The soup is warm. #In fact, it is cold.
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3.2. Entailment and embedding

Entailments are sensitive to their syntactic environment.

(21) a. John owns a blue sweater. ⇒ John owns a sweater.
b. Surprisingly, John owns a blue sweater. ⇒ John owns a sweater.
c. John doesn’t own a blue sweater. ; John owns a sweater.
d. Does John own a blue sweater? ; John owns a sweater.
e. If John owns a blue sweater, he will be considered cool. ; John owns a sweater.
f. Mary thinks that John owns a blue sweater; John owns a sweater.

This is an important property, since it allows us to distinguish entailments from a second kind of
inference, a presupposition.

(22) a. John’s daughter is 12 years old.
b. ⇒ John has a daughter.

The relation between (22-a) and (22-b) is not one of entailment, because the inference remains in different
environments.

(23) a. Is John’s daughter 12 years old?
b. It’s not the case that John’s daughter is 12 years old.
c. If John’s daughter is 12 years old, then she could become friends with Sue.

4 Writing down truth-conditions

There is an immediate problem with using truth-conditions for the meaning of sentences. How will
we write them down? One option is to use paraphrases. For instance, the meaning of (24-a) is the
paraphrase of truth-conditions in (24-b).

(24) a. John owns a blue sweater.
b. There exists a blue sweater such that the individual named John owns this sweater.

Using paraphrases has an important drawback. By using paraphrases, the language we use to state our
truth-conditions in is the same as the language we are studying. We are thereby basically postponing
semantic analysis, for the meaning of the paraphrase is part of what our semantic theory needs to
explain. The biggest risk in this is in ambiguity. If a paraphrase is ambiguous, then it is unsuitable for
representing the truth-conditions of a sentence, for it would fail to determine a single set of conditions.
Consider, for instance, (25).

(25) The four boys ate three apples.

We could say that (25) is true if and only if the group of individuals that is the reference of the four boys
have the property that is the reference of ate three apples. This, unfortunately, is a semantic stale mate, for
(25) is very interesting from a semantic point of view, something which is completely obscured by using
the language in which the original sentence was stated as the language for presenting its truth-conditions.

What makes (25) interesting is that it is ambiguous. On one reading, it says that there were three apples
and that these were eaten by the boys. On another reading, however, the boys each have the property
of eating three apples. While in the first reading, three apples were eaten, in the second twelve apples
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were eaten.

We could distinguish between the two readings by using more elaborate paraphrases, such as:

(26) a. There are three apples and the four boys ate these three apples
b. For each of the four boys there are three apples such that the boy in question ate these three

apples

What these complex paraphrases underline is the complexity of reaching an accurate statement of truth-
conditions. As stated before, the paraphrase needs to be completely unambiguous. The problem now
is what the relation is between the original sentence (25) and the two paraphrases in (26). Ideally,
we would want a systematic and completely predictive system that derives paraphrases for sentences.
This is another reason why we want to use a formal language as our metalanguage. Because our
theory of interpretation ought to account for the productive nature of meaning, in our mapping from
object to meta-language we must be able to systematically ensure that the meta-language expression is
unambiguous, we cannot do this on a case-by-case basis.

The common way to write down truth-conditions is therefore to choose a formal language as the
metalanguage, and to choose a formal language of which we know exactly the correspondence to truth-
conditions. Usually, we use a language called predicate logic. So, instead of the paraphrase in (27-b), we
will use the predicate logical sentence in (27-c) to represent the truth-conditions of (27-a).

(27) a. Rick has a 50 cent coin in his wallet.
b. there is a 50 cent coin which is contained in Rick’s wallet
c. ∃x[50-cent-coin(x) ∧ in(Rick’s-wallet,x)]

We will work towards a detailed understanding of predicate logic below. Before we do so, it is important
to understand what role the logic is going to play. A good theory of semantics will offer a system for
translating a natural language sentence into a predicate logical sentence. The logic is such that we have
full knowledge of what the meaning relations are between sentences in the logical language. In other
words, we know exactly which logical sentences entail which other logical sentences. It is the task of the
semantic theory to ensure that whenever there is an entailment relation between two natural language
sentences, there is also an entailment relation between the two corresponding logical sentences, and vice
versa.. Schematically,

(28) S ⇒ S’ (natural language)
↓ ↓ (semantic interpretation)
ϕ |= ψ (logical language)

Conversely, because we have full knowledge of the entailment relations within the logical language,
by mapping natural language sentences to logical ones, a semantic theory predicts what entailment
relations we should observe with respect to natural language sentences.
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5 Predicate Logic

5.1. Connectives

Before we have a look at predicate logic, we have to introduce truth-conditional connectives. Such con-
nectives have a rough correspondence to expressions in natural languages that combine or manipulate
clauses. Think of coordinating expressions like and and or, which combine two truth-conditional struc-
tures to create a new structure with truth-conditional meaning. In the logical language these expressions
are called connectives. Our first step to defining predicate logic will be to look at the meaning of these
connectives.

Assume that in the logic we have a means of expressing propositions. Propositions are expressions that
have a truth-value. Let’s say that ϕ and ψ stand for such propositions, then we can define the following
more complex expressions:

(29) a. ϕ ∧ ψ: conjunction ‘ϕ and ψ’
b. ϕ ∨ ψ: disjunction ‘ϕ or ψ’
c. ϕ→ ψ: implication ‘if ϕ then ψ’
d. ¬ϕ (and ¬ψ): negation ‘it’s not the case that ϕ’

These connectives are interpreted according to how they manipulate the truth-value of the proposition(s)
they combine with. For instance, for a disjunction to be true, one or more of the disjunct propositions
need to be true. For a conjunction to be true, both conjuncted propositions need to be true. We can
represent these truth-conditions for complex sentences in so-called truth tables. In such tables, but in
logic in general, it is customary to refer to the truth value true as 1 and the value false as 0. Here is the
interpretation of the four connectives in (29):

(30) negation conjunction disjunction material implication
ϕ ¬ϕ

1 0
0 1

ϕ ψ ϕ ∧ ψ

1 0 0
0 1 0
1 1 1
0 0 0

ϕ ψ ϕ ∨ ψ

1 0 1
0 1 1
1 1 1
0 0 0

ϕ ψ ϕ→ ψ

1 0 0
0 1 1
1 1 1
0 0 1

Up to a certain extent, these tables will be intuitive. Most people can convince themselves that the
semantics of ¬ and ∧ has a correspondence to the meaning of not and and respectively. The meaning
of ∨ and →, however, is a different matter. It is clearly debatable whether ∨ is suitable to model the
meaning of or and whether→ is suitable to model the meaning of conditionals. While it is interesting to
compare the connectives as defined in (30) to the meaning of potential natural language counterparts, it
is important to understand that the semantics in (30) is not meant to be a semantics of natural language.
It is merely a way of defining a formal language. It is up to semantic theory to study in detail the relation
between the particular semantics in (30) and our observations about natural language meaning. For
instance, you might believe that (31) is false if John ate both the pizza and the linguini.

(31) John had the pizza or he had the linguini.

In that case, ∨ does not model this use of or, but we need something more complex to describe natural
language disjunction. If ϕ is the proposition that John had pizza and ψ is the proposition that he had
linguini, then (31) could be thought to express (32).

(32) (ϕ ∨ ψ) ∧ ¬(ϕ ∧ ψ)
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5.2. The building blocks of predicate logic

We now know how to combine propositions into complex propositions. However, we don’t yet know
where the simplex propositions themselves come from. Here are some examples of basic propositions
in predicate logic:

(33) a. asleep( j)
b. hate( j,m)
c. P(x)
d. asleep(y)
e. hate(x,m)
f. give( j, x,m)

The vocabulary of a predicate-logical language makes two distinctions:

1. the distinction between terms and predicates;

2. the distinction between variables and constants

In predicate logic, simple propositions are formed by predicate-argument combinations. For example,
if P is a predicate and a an argument, then P(a) is a proposition. Expressions that can be arguments
of predicates are called terms. What P(a) expresses is the proposition that is true if a has the property
expressed by P and false otherwise. In other words, predicates express properties and terms express
individual that may or may not have certain properties. For instance, with (33-a) we might be expressing
that the individual j (call him John) has the property asleep. So, asleep( j) expresses the proposition that is
true if and only if John is asleep.

Some predicates take more than one term as argument, as in (33-b), which could be used to express the
truth-conditions that go with John hates Mary.

Some terms refer to specific individuals. For instance, we can use j to stand for the individual called
John, m for Mary, etc. Such terms are called individual constants. Not all terms are constants, however.
Sometimes we need to express terms without a specific reference. Such terms are called individual
variables. We need variables to make statements that are not about specific individuals, but about
individuals in general. For instance, we could assert that there exists an individual which has both the
property of being a boy and the property of being lazy. The way to do this is to use a variable and then
to quantify over this variable.

(34) ∃x[boy(x) ∧ lazy(x)]

This says that for some value for x, it is true that this value is both a boy and lazy. For instance, if it is
true that boy( j) ∧ lazy( j), then (34) will be true, because we have found a way of “filling in” the variable
x that makes the scope of the quantifier (everything between the brackets [ and ]) true, namely with j.

Note that, by itself, a variable has no real meaning. Variables are only meaningful in context. In (34),
boy(x) is meaningful because it is in the scope of the existential quantifier ∃ that quantifies over x.

Predicate logic has two modes of quantification: besides the existential quantifier ∃, there is the universal
quantifier ∀. The formula in (35) expresses that all possible ways of filling in x will make beauti f ul(x)
true. In other words, everything is beautiful.

(35) ∀x[beauti f ul(x)]
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Universal quantification is truly universal. For a universally quantified statement to be true, its scope
has to be true of all entities in the world. So, (35) is an extremely strong statement. It does not just say
that everybody is beautiful, it says that everything is. So how do we express something weaker like every
flower is beautiful in predicate logic? We do this as follows:

(36) ∀x[ f lower(x)→ beauti f ul(x)]

This says that for any x, if this x is a flower, then it is also beautiful, which is the same as saying that
every flower is beautiful. It is important to understand how this works. The quantifier in (36) quantifies
over all entities in the world. For (36) to be true, its scope has to be true for all possible values for x. So,
it shouldn’t matter whether we substitute John for x, or a rose, or a daffodil, or a giraffe, all these values
should make the scope of the quantifier true. Note however, that if we substitute John for x, we require
the following to be true:

(37) f lower( j)→ beauti f ul( j)

Since John is not a flower, (37) is trivially true. (If you don’t understand why, have another look at the
truth-table for implication in (30).) In fact, the only interesting cases for (36) are cases in which the value
for x is a flower. All other cases make the scope of ∀x vacuously true. The only way to falsify (36) is to
find something that is a flower, but which is not beautiful.

Two notes on variables: The distinction between variables and constants is not only relevant with respect
to terms. Predicates too can be variable or constant. For instance, (38) says that there exists some property
that Mary has, but John lacks.

(38) ∃P[P(m) ∧ ¬P( j)]

Finally, the choice of a variable name is in principle immaterial. That is, there is no difference in meaning
between (39-a) and (39-b), while there is (of course) a difference in meaning between (39-b) and (39-c)
(assuming j and m are constants).

(39) a. ∃x[boy(x) ∧ hate(x,m)]
b. ∃y[boy(y) ∧ hate(y,m)]
c. ∃y[boy(y) ∧ hate(y, j)]

One should be careful not to use the same variable twice, however. For instance, (40-a) is not the same
as (40-b).

(40) a. ∃x∃y[boy(x) ∧ girl(y) ∧ hate(x, y)]
b. ∃x∃x[boy(x) ∧ girl(x) ∧ hate(x, x)]

9



5.3. Some examples of predicate logic

(41) John is asleep asleep( j)
John is asleep and Bill is too asleep( j) ∧ asleep(b)
John is asleep but Bill isn’t asleep( j) ∧ ¬asleep(b)
John is asleep or he is ill asleep( j) ∨ ill( j)
Some boy is asleep ∃x[boy(x) ∧ asleep(x)]
If John is asleep, he is lazy asleep( j)→ lazy( j)
Every boy is asleep ∀x[boy(x)→ asleep(x)]
John hates Mary hate( j,m)
Every boy hates Mary ∀x[boy(x)→ hate(x,m)]

The examples in (41) are to get an idea of the kind of formulae predicate logic allows, and to which
natural language sentences they roughly correspond. (Roughly, because we will only be able to properly
link natural language to predicate logic once we introduce a system of compositional interpretation.)

Predicate logic comes with quite a bit of terminology. Here’s a dissection of a couple of sentences in
predicate logic with some important notions spelled out.

(42) ∀x[boy(x)→ hate(x,m)]
boy: unary predicate constant (a predicate that combines with a single argument only)
hate: binary predicate constant (a predicate that needs to combine with two arguments)
m: individual constant (a term with specific reference)
x: individual variable (a term lacking specific reference)
m, x: terms (arguments for predicates)
∀: universal quantifier
→: a connective, in particular so-called material implication
boy(x)→ hate(x,m): the scope of ∀x

(43) ∃x∃y[boy(x) ∧ hate(x, y)]
boy, hate: predicate constants
x, y: individual variables
∧: a connective, namely conjunction
∃: existential quantifier
∃y[boy(x) ∧ hate(x, y)]: the scope of ∃x
boy(x) ∧ hate(x, y): the scope of ∃y

5.4. How to read predicate logic

(44) ∃x[. . .] there exists an x such that . . .
asleep(x) x is asleep
boy(x) x is a boy
hate( j,m) John hates Mary
∀x[. . .] for every x. . .
∀x[ϕ→ ψ] for every x such that ϕ it is the case that ψ
∀x[boy(x)→ sleeps(x)] for every x such that x is a boy, it’s the case that x is asleep

= every x that is a boy is asleep
= every boy is asleep

10



Exercise— Read and try to understand the following formulae:

(45) a. ∀x[student(x) ∧ ¬lazy(x)]
b. ∀x[student(x)→ ∃y[pro f essor(y) ∧ hate(x, y)]]
c. ∃y[pro f essor(y) ∧ ∀x[student(x)→ hate(x, y)]]

6 Interpreting predicate logic

6.1. Predicates and Set theory

A set is a formal object that lumps together a collection of other formal objects. Say, there exist three
objects a, b, and c, then there also exists the set {a, b, c}, the set containing all these objects. But more
things are possible:

(46) a. {a, b} the set containing a and b
b. {a} the set containing just a
c. {{a, b}, a} the set containing a and containing the set containing a and b

The entities in a set are called the elements of a set. Note:

(47) a. {a} is not the same as a
b. {a, b, c} is not the same as {{a, b, c}}

(To get the idea: the bag containing your purse is not the same thing as your purse. Note also that {a, a}
does not make sense. You can only put your purse into your bag once. However, this analogy does not
go far: {a, {a}} is a set, since it contains two different entities.)

Set theory defines a powerful toolbox of how to reason about sets and their contents. For now, we
only need one notion of set theory, namely that of being an element of a set. (More on set theory below,
though).

(48) a ∈ A : “a is an element of A”

Using ∈, we can produce truth-conditional statements about sets and their contents. For instance,
a ∈ {b, g, a, c} is true, but a ∈ {b, g, c, r} is false.

The relevance of set theory to predicate logic is as follows. Predicates in predicate logic are interpreted as
sets. For instance, the predicate f riendly could be interpreted as the set of all friendly entities. Similarly,
the predicate boy would correspond to the set of boys. We use the following notation.

(49) a. J f riendlyKw = {John, Bill, Mary, Sue, . . . }
b. JboyKw = {John, Harry, . . . }

Ignoring the superscript w for now, the rationale behind this is that nouns like boy, adjectives like friendly,
but also intransitive verbs like smoke express properties (the properties of being a boy, being friendly
and being a smoker, respectively). Properties divide the domain of entities; i.e. they distinguish two
kinds of entities: those that have the property and those that do not. This is exactly what a set does too.
The set {a, b, c} divides the domain in entities that are included in the set (a, b and c) and entities that
are not (all the rest). In sum, in logic, we do not distinguish between adjectives, nouns and intransitive
verbs: they all express sets and, in predicate logic, they all correspond to predicates. Given this relation
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between predicates and sets, the interpretation of propositions that are made up of a predicate-argument
combination is straightforward:

(50) JP(a)Kw = 1 if and only if JaKw
∈ JPKw

Now asleep( j) is true if and only if the individual j refers to is a member of the set asleep refers to, which
is set theory speak of saying that this individual is to have the property of being asleep.

The brackets J K map predicate logical expressions to entities and sets, but they only do so with respect
to a parameter w. This parameter indicates the possible world with respect to which interpretation takes
place. Worlds differ in all kinds of ways, for instance, with respect to who is asleep and who is awake.
So, in one possible world, say w3 above, John and Bill are both asleep, but in another (say, w4) Bill could
be awake, and in yet another (say, w351) John and Bill are both awake. To know the meaning of John is
asleep is to know for which parameters w the value of asleep( j) is 1.

6.2. Binary (and ternary) predicates

If unary predicate correspond to sets, what do binary predicates correspond to? The answer is that they
also correspond to sets, but to sets of a certain kind, namely sets of ordered pairs. Assume that in the world
we are considering – call it w4 – there are only three entities, John, Mary and Ann, and that in this world
John hates Ann, John hates himself, Mary hates John, and no-one else hates no-one else. Schematically,
the hate relation in this world is as follows:

(51) John

��5
55

55
55

55
55

55
55

5
// John

Mary

;;wwwwwwwww
Mary

Ann Ann

This relation corresponds to the following set:

(52) JhateKw4 = {〈John, John〉, 〈Mary, John〉, 〈John,Ann〉}

The elements in this set are ordered pairs. This means that (53) is a crucially different relation from (52).

(53) {〈John, John〉, 〈John,Mary〉, 〈Ann, John〉}

In interpreting the binary predicates of predicate logic, we normally use the following convention about
the ordered pairs : the order of the entities in the ordered pairs reflects the syntactic argument hierarchy
subject > object. Moreover, in predicate logical propositions, we assume this order as well. So hate( j,m)
expresses that John hates Mary, not that Mary hates John. The interpretation of such propositions goes
as follows:

(54) JR(x, y)Kw = 1 if and only if 〈JxKw, JyKw
〉 ∈ JRKw

Ternary predicates correspond to sets of triples.
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6.3. Interpreting quantification

For completeness, here is the way quantification is interpreted in predicate logic.

Say that ϕ is well-formed statement in predicate logic. We write ϕ[v/d] for the proposition that results
from substituting every occurrence of v inϕ by d. For example, boy(x)∧girl(y)[y/m] equals boy(x)∧girl(m).

(55) J∀x[ϕ]Kw = 1 if and only if for every value d: Jϕ[x/d]Kw=1

(56) J∃x[ϕ]Kw = 1 if and only if for some value d: Jϕ[x/d]Kw=1

7 Entailment in predicate logic

Given the interpretation of predicate logical expressions, we can derive *all* entailment relations between
sentences of the logical language. For instance, we know that (57-a) entails (57-b) (indicated by the logical
notation for entailment |=).

(57) a. boy( j) ∧ lazy( j)
b. |= lazy( j)

How do we know this? The truth table for ∧ says that a conjunction is true only if both conjuncts are
true. So, in all cases in which (57-a) is true, both boy( j) and lazy( j) will be true, hence the entailment to
(57-b). Another example is the following: (58-a) entails (58-b).

(58) a. ∃x[sweater(x) ∧ blue(x) ∧ own( j, x)]
b. |= ∃x[sweater(x) ∧ own( j, x)]

This entailment holds since (58-a) is true only if we can find some object, call it d, such that the conjunction
sweater(d)∧ blue(d)∧ own( j, d) is true. Given the semantics of ∧ this means that in those cases sweater(d)∧
own( j, d) is true. Consequently, there exists a value for x such that sweater(x)∧own( j, x) (namely whatever
d was), and so ∃x[sweater(x) ∧ own( j, x)] is true.

8 An example of using predicate logic: scope

In this section, we will encounter a few examples of how predicate logic can be used to be precise about
the meaning of natural language examples. In particular, we will look at how we can use predicate logic
to distinguish between different readings due to quantifier scope.

In logic, the scope of operators and connectives is unambiguously given by a formula. For instance, in
(59-a) the universal quantifier is in the scope of negation, whereas in (59-b) the scopal relation between
negation and quantifier is reversed.

(59) a. ¬∀x[glitters(x)→ gold(x)]
b. ∀x[glitters(x)→ ¬gold(x)]

The form in (59-a) corresponds to the English sentence (60). It says that glittering objects are not
automatically made of gold. The form in (59-b) corresponds to the Dutch sentence (61). It says something
completely different, namely that glittering objects are not made of gold. That is, (61) expresses that no
glittering object is made of gold.2

2By the way, the Dutch example in (61) can express (59-a), but only with a very specific intonation pattern.
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(60) All that glitters is not gold.

not > all
¬∀x[glitter(x)→ gold(x)]

(61) Alles
All

wat
what

glinstert
glitters

is
is

niet
not

van
of

goud.
gold

‘Nothing that glitters is gold’
all > not
∀x[glitter(x)→ ¬gold(x)]

What these examples show is that scope relations are not trivial. Part of the task of semantic analysis
is to understand how scopal relations are expressed in a language. In other words, we would like to
know how given a specific syntactic configuration a specific compositional interpretation comes about,
in particular how the observed scopal relations are realised.

Give predicate logical representations for the meanings of the following examples.

(62) a. John didn’t snore.
b. It is not the case that John snored.

(63) If a relative of mine dies, I will inherit a fortune

(64) What do you think is the scopal relation in the most natural interpretation of the following
sentences? (The examples in (d-f) are from a study in VanLehn, K. (1978). Determining the scope
of English quantifiers. Cambridge, MA: M.I.T. Artificial Intelligence laboratory technical report
483. M. S. Dissertation.) Can you give a predicate logical representation of the interpretations?
a. A letter informed me that every student of mine complained.
b. A letter was sent informing every student about their result.
c. A letter informed the dean about each student’s results.
d. At the conference yesterday, I managed to talk to a guy who is representing each raw rubber

producer in Brazil
e. At the conference yesterday, I managed to talk to a guy representing each raw rubber

producer in Brazil
f. At the conference yesterday, I managed to talk to a representative from each raw rubber

producer in Brazil

9 Further reading

Hodges (2001) is a good and accessible introduction to elementary logic. Chapter 3 and 4 of de Swart
(1998) contain a detailed and gentle introduction to predicate logic. For a somewhat less accessible but
very rigorous overview of set theory, logic and other mathematical aspects of formal semantics, see
various chapters in Partee et al. (1993).

Interestingly, Heim and Kratzer (1998) does not contain any predicate logic. Heim and Kratzer sidestep
predicate logic by doing everything in set theory. More on this in the next handout.
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